مسئله هماهنگ سازی شبکه های عصبی آشوبگونه با اغتشاش تصادفی مورد بررسی قرار گرفته است. مسئله کنترل و هماهنگ سازی این سیستم ها به شدت مورد توجه قرار گرقت و روش های مختلفی مثل کنترل حلقه بسته خطی و غیرخطی ، کنترل تطبیقی و نظایر آن جهت رسیدن به این هدف ، ارائه گردید . در مدلسازی سیستم ها ، توانایی تقریب به وسیله نورون ها ، شکل شبکه و قانون آموزش ، محدود می گردد. چگونگی بهبود خاصیت ارگادیک ANN یک مسئله مهم جهت تحقیق و یررسی می باشد. سیستم های آشوبگونه دارای مشخصاتی تصادفی هستند و الگوریتم آشوبی باعث ایجاد خاصیت قوی ارگادیک در شبکه می گردد.
این مقاله مقدمه ای بر شبکه های عصبی مصنوعی است. گونه های مختلف شبکه های عصبی توضیح و شرح داده شده است و کاربرد های شبکه های عصبی، نظیر ANN ها در پزشکی بیان شده و همچنین سابقه ای تاریخی از آن به تفصیل آورده شده است. همچنین رابطه بین چیزهای ساختگی و واقعی مورد بررسی قرار گرفته و در مورد آن توضیح داده شده است و به شرح مدل های ریاضی در رابطه با این موضوع و آنالیز رفتار آشوبگونه مدل شبکه عصبی مکانیسم لرزش عضله و هماهنگ سازی نمایی شبکه عصبی آشوبگونه با اغتشاش تصادفی و شناسایی شبکه های آشوبگونه آغشته به نویز بر مبنای شبکه های عصبی feedforward رگولاریزاسیون و همچنین شبکه های عصبی و الگوریتم های ژنتیک در تجارت می پردازیم.
فهرست :
چکیده فارسی
مقدمه
فصل اول
شبکه عصبی
سابقه تاریخی
چرا از شبکه های عصبی استفاده می کنیم
مزیتهای دیگر شبکه های عصبی
شبکه های عصبی در مقابل کامپیوتر های معمولی
انسان و سلول های عصبی مصنوعی در جستجوی شباهت ها
از سلول های عصبی انسانی تا سلول های عصبی مصنوعی
انواع یادگیری برای شبکه های عصبی
زمینهای در مورد perceptron
دنبالههای Perceptron
قضیه بنیادی دنبالهها
هوش جمعی
(Particle Swarm Optimitation(PSO
فصل دوم
یک شبکه عصبی جدید و کاربرد آن
معرفی
نورون با خاصیت آشوبگونه
شکل شبکه
قانون آموزش شبکه
مدلسازی ژنراتور سنکرون دریایی
نتایج مدلسازی
نتیجه فصل
فصل سوم
آنالیز رفتار آشوبگونه مدل شبکه عصبی مکانیسم لرزش عضله
منحنی طول – کشش
ساختار برگشتی
تغییرات طیف
نتایج فصل
فصل چهارم
هماهنگ سازی نمایی شبکه های عصبی آشوبگونه با اغتشاش تصادفی
نمادها و مقدمات
فهرست منابع (ابتدا منابع فارسی و سپس منابع غیر فارسی)
منابع فارسی
منابع لاتین
چکیده انگلیسی
فهرست جداول
شکل نورون آشوب گونه
شکل cnn
شکل سیستم شناسایی ژنراتور سنکرون دریایی به وسیله شبکه عصبی
شکل توان گشتاور ورودی و فرکانس خروجی ژنراتور
شکل جریان تحریک ورودی و ولتاژ خروجی پایانه
شکل منحنی mse هنگام trainin شبکه
شکل فرکانس خروجی ژنراتور ، شبکه و خطای بین آنها
شکل تابع کشش – طول فعال
شکل شبکه برگشتی
شکل نمودار دو شاخه شدن
شکل حساسیت به شرط اولیه
شکل ایجاد طیف پیوسته از طریق افزایش فرکانس های گسسته
شکل نرخ هماهنگ سازی نمایی سیستم با خطای دینامیک
شکل دینامیک های سنکرون نشده در فضای حالت
#نسخه_الکترونیکی_کمک_در_کاهش_تولید_کاغذ_است. #اگر_مالک_یا_ناشر_فایل_هستید، با ثبت نام در سایت محصول را به سبدکاربری خود منتقل و درآمدفروش آن را دریافت نمایید.
تعداد مشاهده: 3134 مشاهده
فرمت محصول دانلودی:.pdf
فرمت فایل اصلی: pdf
تعداد صفحات: 56
حجم محصول:1,390 کیلوبایت